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Abstract
Background De novo transcriptome assemblies are required prior to analyzing RNAseq data from a species without an
existing reference genome or transcriptome. Despite the prevalence of transcriptomic studies, the e�ects of using di�erent
work�ows, or “pipelines”, on the resulting assemblies are poorly understood. Here, a pipeline was programmatically
automated and used to assemble and annotate raw transcriptomic short read data collected by the Marine Microbial
Eukaryotic Transcriptome Sequencing Project (MMETSP). The resulting transcriptome assemblies were evaluated and
compared against assemblies that were previously generated with a di�erent pipeline developed by the National Center for
Genome Research (NCGR). Results New transcriptome assemblies contained the majority of previous contigs as well as new
content. On average, 7.8% of the annotated contigs in the new assemblies were novel gene names not found in the
previous assemblies. Taxonomic trends were observed in the assembly metrics. Assemblies from the Dino�agellata showed
a higher number of contigs and unique k-mers than transcriptomes from other phyla while assemblies from Ciliophora
had a lower percentage of open reading frames compared to other phyla. Conclusions Given current bioinformatics
approaches, there is no single ‘best’ reference transcriptome for a particular set of raw data. As the optimum
transcriptome is a moving target, improving (or not) with new tools and approaches, automated and programmable
pipelines are invaluable for managing the computationally-intensive tasks required for re-processing large sets of samples
with revised pipelines and ensuring a common evaluation work�ow is applied to all samples. Thus, re-assembling existing
data with new tools using automated and programmable pipelines may yield more accurate identi�cation of taxon-speci�c
trends across samples in addition to novel and useful products for the community.
Key words: marine microbial eukaryote; transcriptome assembly; automated pipeline; re-analysis

Introduction

The analysis of gene expression from high-throughput nucleic
acid sequence data relies on the presence of a high quality ref-
erence genome or transcriptome. When there is no reference
genome or transcriptome for an organism of interest, raw RNA
sequence data (RNAseq) must be assembled de novo into a tran-
scriptome [1]. This type of analysis is ubiquitous across many
�elds, including: evolutionary developmental biology [2], can-
cer biology [3], agriculture [4, 5], ecological physiology [6, 7],
and biological oceanography [8]. In recent years, substantial

investments have been made in data generation, primary data
analysis, and development of downstream applications, such
as biomarkers and diagnostic tools [9, 10, 11, 12, 13, 14, 15, 16]
Methods for de novo RNAseq assembly of the most common

short read Illumina sequencing data continue to evolve rapidly,
especially for non-model species [17]. At this time, there are
several major de novo transcriptome assembly software tools
available to choose from, including Trinity [18], SOAPdenovo-
Trans [19], Trans-ABySS [20], Oases [21], SPAdes [22], IDBA-
tran [23], and Shannon [24]. The availability of these options
stems from continued research into the unique computational
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Key Points

• Re-assembly with new tools can yield new results
• Automated and programmable pipelines can be used to process arbitrarily many samples.
• Analyzing many samples using a common pipeline identi�es taxon-speci�c trends.

challenges associated with transcriptome assembly of short
read Illumina RNAseq data, including large memory require-
ments, alternative splicing and allelic variants [18, 25],
The continuous development of new tools and work�ows

for RNAseq analysis combined with the vast amount of pub-
licly available RNAseq data [26] raises the opportunity to re-
analyze existing data with new tools. This, however, is rarely
done systematically. To evaluate the performance impact of
new tools on old data, we developed and applied a program-
matically automated de novo transcriptome assembly work�ow
that is modularized and extensible based on the Eel Pond Proto-
col [27]. This work�ow incorporates Trimmomatic [28], digital
normalization with khmer software [29, 30], and the Trinity de
novo transcriptome assembler [18].
To evaluate this pipeline, we re-analyzed RNAseq data from

678 samples generated as part of the Marine Microbial Eukary-
otic Transcriptome Sequencing Project (MMETSP) [31]. The
MMETSP data set was generated to broaden the diversity of se-
quenced marine protists to enhance our understanding of their
evolution and roles in marine ecosystems and biogeochemical
cycles [31, 32]. With data from species spanning more than
40 eukaryotic phyla, the MMETSP provides one of the largest
publicly-available collections of RNAseq data from a diversity
of species. Moreover, the MMETSP used a standardized library
preparation procedure and all of the samples were sequenced at
the same facility, making this data set unusually comparable.
Reference transcriptomes for the MMETSP were originally

assembled by the National Center for Genome Research (NCGR)
with a pipeline which used the Trans-ABySS software program
to assemble the short reads [31]. The transcriptomes gener-
ated from the NCGR pipeline have already facilitated discover-
ies in the evolutionary history of ecologically signi�cant genes
[33, 34], di�erential gene expression under shifting environ-
mental conditions [8, 35], inter-group transcriptomic compar-
isons [36], unique transcriptional features [37, 38, 39], and
meta-transcriptomic studies [34, 35, 36]
In re-assembling the MMETSP data, we sought to compare

and improve the original MMETSP reference transcriptome and
to create a platform which facilitates automated re-assembly
and evaluation. Here, we show that our re-assemblies had bet-
ter evaluation metrics and contained most of the NCGR contigs
as well as adding new content.

Methods

Programmatically Automated Pipeline
An automated pipeline was developed to execute the steps of
the Eel Pond mRNAseq Protocol [27], a lightweight protocol for
assembling short Illumina RNAseq reads that uses the Trinity
de novo transcriptome assembler. This protocol generates de
novo transcriptome assemblies of acceptable quality [40]. The
pipeline was used to assemble all of the data from the MMETSP
(Figure 1). The code and instructions for running the pipeline
are available at https://doi.org/10.5281/zenodo.740440 [41].
The steps of the pipeline applied to the MMETSP are as fol-

lows:

1. Download the raw data
Raw RNA-seq data sets were obtained from the National Center
for Biotechnology Information (NCBI) Sequence Read Archive
(SRA) from BioProject PRJNA231566. Data were paired-end
(PE) Illumina reads with lengths of 50 bases for each read. A
metadata (SraRunInfo.csv) �le obtained from the SRA web in-
terface was used to provide a list of samples to the get_data.py
pipeline script, which was then used to download and extract
fastq �les from 719 records. The script uses the fastq-dump
program from the SRA Toolkit to extract the SRA-formatted
fastq �les (version 2.5.4) [42]. There were 18MMETSP samples
with more than one SRA record (MMETSP0693, MMETSP1019,
MMETSP0923, MMETSP0008, MMETSP1002, MMETSP1325,
MMETSP1018, MMETSP1346, MMETSP0088, MMETSP0092,
MMETSP0717, MMETSP0223, MMETSP0115, MMETSP0196,
MMETSP0197, MMETSP0398, MMETSP0399, MMETSP0922).
In these cases, reads from multiple SRA records were concate-
nated together per sample. Taking these redundancies into
consideration, there were a total of 678 re-assemblies gener-
ated from the 719 records in PRJNA231566 (Supplemental Note-
book 1 [43]). Assembly evaluation metrics were not calculated
for MMETSP samples with more than one SRA record because
these assemblies were di�erent than the others, containing
multiple samples, and thus not as comparable.
Initial transcriptomes that were assembled by the National

Center for Genome Resources (NCGR), using methods and
data described in the original publication [31], were down-
loaded from the iMicrobe repository to compare with our re-
assemblies (ftp://ftp.imicrobe.us/projects/104/). There were
two versions of each assembly, ‘nt’ and ‘cds’. The version used
for comparison is noted below in each evaluation step. To our
knowledge, the NCGR took extra post-processing steps to �lter
content, leaving only coding sequences in the ‘cds’ versions of
each assembly [31]
2. Perform quality control
Reads were analyzed with FastQC (v0.11.5) [44] and multiqc
(version 1.2) [45] to con�rm overall qualities before and after
trimming. A conservative trimming approach [46] was used
with Trimmomatic (version 0.33) [28] to remove residual Illu-
mina adapters and cut bases o� the start (LEADING) and end
(TRAILING) of reads if they were below a threshold Phred qual-
ity score (Q<2).
3. Apply digital normalization
To decrease the memory requirements for each assembly, dig-
ital normalization was applied with the khmer software pack-
age (v2.0) prior to assembly [47]. First, reads were interleaved,
normalized to a k-mer (k = 20) coverage of 20 and a mem-
ory size of 4e9, then low-abundance k-mers from reads with
a coverage above 18 were trimmed. Orphaned reads, where the
mated pair was removed during normalization, were added to
the normalized reads.
4. Assemble
Transcriptomes were assembled from normalized reads with
Trinity 2.2.0 using default parameters (k = 25). This version
of Trinity (v2.2.0) did not include the “in silico normaliza-
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tion” option as a default parameter. The digital normalization
approach we used with khmer is the same algorithm imple-
mented in Trinity, but it requires less memory and is faster
[48].
The resulting assemblies are referred to below as the “Lab

for Data Intensive Biology” assemblies, or DIB assemblies. The
original assemblies are referred to as the NCGR assemblies.
5. Post-assembly assessment
Transcriptomes were annotated using the dammit pipeline
(version v1.0.dev0) [49], which relies on the following
databases as evidence: Pfam-A (version 28.0) [50], Rfam (ver-
sion 12.1) [51], OrthoDB (version 8) [52]. In the case where
there were multiple database hits, one gene name per contig
was selected by choosing the name of the lowest e-value match
(<1e-05).
All assemblies were evaluated using metrics generated by

the Transrate program (v1.0.3) [53]. Trimmed reads were used
to calculate a Transrate score for each assembly, which rep-
resents the geometric mean of all contig scores multiplied by
the proportion of input reads providing positive support for
the assembly [50]. Comparative metrics were calculated us-
ing Transrate for each MMETSP sample between DIB and the
NCGR assemblies using the Conditional Reciprocal Best BLAST
hits (CRBB) algorithm [54]. A forward comparison was made
with the NCGR assembly used as the reference and each DIB
re-assembly as the query. Reverse comparative metrics were
calculated with each DIB re-assembly as the reference and the
NCGR assembly as the query. Transrate scores were calculated
for each assembly using the Trimmomatic quality-trimmed
reads, prior to digital normalization.
Benchmarking Universal Single-Copy Orthologs (BUSCO)

software (version 3) was used with a database of 215 orthol-
ogous genes speci�c to protistans and 303 genes speci�c to eu-
karyota with open reading frames in the assemblies. BUSCO
scores are frequently used as one measure of assembly com-
pleteness [55]
To assess the occurrences of �xed-length words in the as-

semblies, unique 25-mers were measured in each assembly us-
ing the HyperLogLog (HLL) estimator of cardinality built into
the khmer software package [56]. We used the HLL function to
digest each assembly and count the number of distinct �xed-
length substrings of DNA (k-mers).

Table 1. Number of assemblies with higher values in NCGR or DIBfor each quality metric. The "cds" or "nt" indicate the version ofthe NCGR assembly compared with. The NCGR "cds" assemblieswere �ltered for ORF content.
Quality Metric Higher in NCGR Higher in DIB
Transrate score, “cds” 44 583
Transrate score, “nt” 495 143
Mean ORF %, "cds" 592 35
Mean ORF %, “nt” 42 596
% References with CRBB, "nt" 100 538
Number of contigs, "nt" 12 626
% Complete BUSCO, Eukaryota, "nt" 381 235

Unique gene names were compared from a random subset
of 296 samples using the dammit annotation pipeline [49]. If
a gene name was annotated in NCGR but not in DIB, this was
considered a gene uniquely annotated in NCGR. Unique gene
names were normalized to the total number of annotated genes
in each assembly.
A Tukey’s honest signi�cant di�erent (HSD) post-hoc

range test of multiple pairwise comparisons was used in
conjunction with an ANOVA to measure di�erences between
distributions of data from the top eight most-represented
phyla ("Bacillariophyta", "Dinophyta", "Ochrophyta", "Hap-
tophyta", "Ciliophora", "Chlorophyta", "Cryptophyta", "Oth-
ers") using the ‘agricolae’ package version 1.2-8 in R version
3.4.2 (2017-09-28). Margins sharing a letter in the group label
are not signi�cantly di�erent at the 5% level (8). Averages are
reported ± standard deviation.

Results

After assemblies and annotations were completed, �les were
uploaded to Figshare and Zenodo are available for down-
load [57, 58, 59]. Due to obstacles encountered upload-
ing and maintaining 678 assemblies on Figshare, Zen-
odo will be the long-term archive for these re-assemblies
https://doi.org/10.5281/zenodo.740440. Assembly quality met-
rics were summarized and are available (Supplemental Tables
1 and 2 [43]).

Figure 1. A programmatically automated de novo transcriptome assembly pipeline was developed for this study. Metadata in the SraRunInfo.csv �le downloaded
from NCBI was used as input for each step of the pipeline to indicate which samples were processed. The steps of the pipeline are as follows: download raw fastq
data with the fastq-dump script in the SRA Toolkit, perform quality assessment with FastQC and trim residual Illumina adapters and low quality bases (Q<2)
with Trimmomatic, do digital normalization with khmer version 2.0, and perform de novo transcriptome assembly with Trinity. If a process was terminated, the
automated nature of this pipeline allowed for the last process to be run again without starting the pipeline over. In the future, if a new sample is added, the
pipeline can be run from beginning to end with just new samples, without having to repeat the processing of all samples in the dataset as one batch. If a new tool
becomes available, for example a new assembler, it can be substituted in lieu of the original tool used by this pipeline.
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Figure 2. The number of contigs and Transrate quality score for each data set
varied between DIB and NCGR assemblies. (A) Slopegraphs show shifts in the
number of contigs for each individual sample between the DIB and the NCGR
assembly pipelines. Negative slope (yellow) lines represent values where NCGR
was higher than DIB and positive slope (blue) lines represent values where
DIB was higher than NCGR. (B) Split violin plots show the distribution of the
number of contigs in each assembly with the original assemblies from NCGR
in yellow (left) and the DIB re-assemblies and in blue (right side of B). (C) The
di�erence in Transrate score between the DIB and NCGR assemblies is shown
as a histogram. Negative values on the x-axis indicate that the NCGR assembly
had a higher Transrate score and positive values indicate that the DIB assembly
had a higher Transrate score.

Di�erences in available evaluation metrics between NCGR and DIB
were variable.

The majority of transcriptome evaluation metrics collected for
each sample were higher in Trinity-based DIB re-assemblies
than for the Trans-ABySS-based NCGR assemblies, ’cds’ ver-
sions (1). The Transrate score from the “nt” version of the
assemblies were higher in NCGR vs. DIB, whereas compared to
the ’cds’ version, the DIB re-assemblies were higher (Supple-
mental Figure 1 [43]). Since the NCGR ’cds’ assemblies were
�ltered for open reading frame (ORF) content, and the DIB re-
assemblies were not �ltered, the un�ltered NCGR ’nt’ assem-
blies are more comparable to the DIB re-assemblies.
The DIB re-assemblies had more contigs than the NCGR as-

semblies in 83.5% of the samples (1). The mean number of
contigs in the DIB re-assemblies was 48,361 ± 35,703 while
the mean number of contigs in the NCGR ‘nt’ assemblies was
30,532 ± 21,353 (2). A two-sample Kolmogorov-Smirnov test

comparing distributions indicated that the number of contigs
were signi�cantly di�erent between DIB and NCGR assemblies
(p < 0.001, D = 0.35715). Transrate scores [53], which calculate
the overall quality of the assembly based on the original reads,
were signi�cantly higher in the DIB re-assemblies (0.31 ± 0.1)
compared to the ‘cds’ versions of the NCGR assemblies (0.22
± 0.09) (p < 0.001, D = 0.49899). The Transrate scores in the
NCGR ‘nt’ assemblies (0.35 ± 0.09) were signi�cantly higher
than the DIB assemblies (0.22 ± 0.09) (p < 0.001, D = 0.22475)
(Supplemental Figure 1 [43]). The frequency of the di�erences
between Transrate scores in the NCGR ‘nt’ assemblies and the
DIB re-assemblies is centered around zero (Figure 2C). Tran-
srate scores from the DIB assemblies relative to the NCGR ‘nt’
assemblies did not appear to have taxonomic trends (Supple-
mental Figure 2 [43]
The DIB re-assemblies contained most of the NCGR contigs as well
as new content.
We applied CRBB to evaluate overlap between the assemblies. A
positive CRBB result indicates that one assembly contains the
same contig information as the other. Thus, the proportion of
positive CRBB hits can be used as a scoring metric to compare
the relative similarity of content between two assemblies. For
example, MMETSP0949 (Chattonella subsalsa) had 39,051 con-
tigs and a CRBB score of 0.71 in the DIB re-assembly whereas
in the NCGR assembly of the same sample had 18,873 contigs
and a CRBB score of 0.34. This indicated that 71% of the ref-
erence of DIB was covered by the NCGR assembly, whereas in
the reverse alignment, the NCGR reference assembly was only
covered by 34% of the DIB re-assembly. The mean CRBB score
in DIB when queried against NCGR ‘nt’ as a reference was 0.70
± 0.22, while the mean proportion for NCGR ‘nt’ assemblies
queried against DIB re-assemblies was 0.49 ± 0.10 (p < 0.001,
D = 0.71121) (3). This indicates that more content from the
NCGR assemblies was included in the DIB re-assemblies than
vice versa and also suggests that the DIB re-assemblies overall
have additional content. This �nding is reinforced by higher

Figure 3. (A) Slopegraphs comparing the proportion of CRBB hits between
NCGR ‘nt’ assemblies and DIB assemblies between the same samples. (B) Vio-
lin plots showing the distribution of the proportion of NCGR transcripts with
reciprocal BLAST hits to DIB (blue) and the proportion of DIB transcripts with
reciprocal BLAST hits to NCGR (yellow).
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Figure 4. Unique numbers of k-mers (k=25) in seven most represented phyla, calculated with the HyperLogLog function in the khmer software package. DIB
re-assemblies were compared to the NCGR ‘nt’ assemblies along a 1:1 line. Samples are colored based on their phylum level a�liation. More than 95% of the DIB
re-assemblies had more unique k-mers than to the NCGR assembly of the same sample.

unique k-mer content found in the DIB re-assemblies com-
pared to NCGR, where more than 95% of the samples had more
unique k-mers in the DIB re-assemblies compared to NCGR as-
semblies (4).
To investigate whether the new sequence content was gen-

uine, we examined two di�erent metrics that take into account
the biological quality of the assemblies. First, the estimated
content of open reading frames (ORFs), or coding regions,
across contigs was quanti�ed. Though DIB re-assemblies had
more contigs, the ORF content is similar to the original as-
semblies, with a mean of 81.8 ± 9.9% ORF content in DIB
re-assemblies and 76.7 ± 10.1% ORF content in the NCGR
assemblies. Nonetheless, ORF content in DIB re-assemblies
was higher than NCGR assemblies for 95% of the samples
(5), although DIB re-assemblies had signi�cantly higher ORF
content (p < 0.001, D = 2681). Second, when the assem-
blies were queried against the eukaryotic BUSCO database [55],
the percentages of BUSCO eukaryotic matches in the DIB re-
assemblies (61.8 ± 19.9%) were similar to the original NCGR
assemblies (63.8 ± 20.3%) (5). However, the DIB re-assemblies
were signi�cantly di�erent compared to the NCGR assemblies
(p = 0.002408, D = 0.099645). Therefore, although the num-
ber of contigs and amount of CRBB content were dramatically
increased in the DIB re-assemblies compared to the NCGR as-
semblies, the di�erences in ORF content and BUSCO matches
compared to eukaryotic (5) and protistan (Supplemental Figure
3 [43]) databases, while they were signi�cantly di�erent, were
less dramatic. This suggests that content was not lost by gain-
ing extra contigs. Since the extra content contained roughly
similar proportions of ORFs and BUSCO annotations, it is likely

that the re-assemblies contribute more biologically meaning-
ful information.
Looking through the results for missing BUSCOs in the

eight samples where NCGR had >30% higher complete BUSCO
evaluation score (MMETSP0121, MMETSP0932, MMETSP0045,
MMETSP0169, MMETSP0232, MMETSP0439, MMETSP0329,
MMETSP0717), in some cases a particular orthogroup in
the BUSCO database does not produce output for reasons
that we don’t understand. For example, the Trinity-based
pipeline only produced 342 contigs for sample MMETSP0232
while the NCGR ’nt’ assembly had 4234 and the ’cds’ version
had 2736. BUSCO did not recognize any of the DIB contigs
but it did recognize the NCGR contigs. For other samples,
MMETSP0169 (Corethron pennatum, Phylum: Bacillariophyta),
the BUSCO software recognized several DIB contigs but the
BUSCO group was still considered "missing", even though
there were lengths of the contig identi�ed in the output
as being similar. For example, the BUSCO orthogroup
"EOG0937060I" is a "DNARNA helicase, ATP-dependent,
DEAH-box type, conserved site". The BUSCO output indicates
the DIB contig, "TRINITY_DN13758_c3_g2_i1" with a length
974 bases is related to this orthogroup. When we look
for this gene in the g� annotation �le for MMETSP0169,
there are no annotation results for this contig. Another DIB
contig, "TRINITY_DN3716_c0_g1_i1" (length 154) is also
identi�ed as similar to this same orthogroup. This contig
does have annotation results, but it matches with a BUSCO
orthogroup, "EOG090C08EI", which is a di�erent gene,
Abl-interactor, homeo-domain homologous domain (ABI
family, member 3a). The top results comparing the contig
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Figure 5. The percentage of contigs with a predicted open reading frame (ORF)
(A, B) and the percentage of complete protistan universal single-copy orthologs
(BUSCO) recovered in each assembly (C, D). In the blue (right side B, D) are
the “DIB” re-assemblies and in yellow (left side of B, D) are the original ‘nt’
assemblies from NCGR. Slopegraphs (A,C) compare values between the DIB and
the NCGR ‘nt’ assemblies. Yellow lines represent negative slope values where
NCGR was higher than DIB and blue lines represent positive slope values where
DIB was higher than NCGR.

sequence, "TRINITY_DN13758_c3_g2_i1" against the NCBI
blastn database matches with small, several hundred bp
regions of the EOG0937060I gene sequence (XM_021257656.1,
XM_004843976.2, XM_010604294.2, XM_010604293.2,
XM_010604291.2, XR_776390.2). Even though this contig
was assembled, it did not successfully annotate. We do
not know whether there are errors associated with this
assembled contig, or if the contig sequence is unique to
this MMETSP0169 organism. Since the BUSCO database and
corresponding orthogroups were constructed from multi-
ple sequence alignments with existing individuals in the

databases, it is possible that the transcriptome from the newly
sequenced, MMETSP0169 (Corethron pennatum) may naturally
fall outside the hmm scoring cuto�s for matching with the
BUSCO orthogroups. Since the corresponding NCGR assembly
had a “Duplicated” result from this particular BUSCO, it is also
possible that there is a particular oddity within this ortholog.
There are many examples that can be picked over in these

results, which suggests that there is more to learn about the
evaluation tools within the context of the organisms in this
data set. For now, we conclude that our assemblies are di�er-
ently fragmented in some regions relative to the NCGR assem-
blies. We have assembled additional sequences that were not
assembled by NCGR. Some NCGR assemblies had di�erent and
more complete content than the DIB assemblies. As far as we
can tell, there does not appear to be a pattern in the samples
that fared well with this pipeline vs. NCGR. This could be a
future avenue to explore.
Following annotation by the dammit pipeline [49], 91 ±

1.6% of the contigs in the DIB re-assemblies had positive
matches with sequence content in the databases queried (Pfam,
Rfam, and OrthoDB), with 48 ± 0.9% of those containing
unique gene names (the remaining are fragments of the same
gene). Of those annotations, 7.8 ± 0.2% were identi�ed as
novel compared to the NCGR ‘nt’ assemblies, determined by
a “false” CRBB result (6). Additionally, the number of unique
gene names in DIB re-assemblies were higher in 97% of the
samples compared to NCGR assemblies, suggesting an increase
in genic content (7).
Novel contigs in the DIB re-assemblies likely represent a

combination of unique annotations, allelic variants and alterna-
tively spliced isoforms. For example, "F0XV46_GROCL", "He-
licase_C", "ODR4-like","PsaA_PsaB", and "Metazoa_SRP"
are novel gene names found annotated in the DIB re-assembly
of the sampleMMETSP1473 (Stichococcus sp.) that were absent
in the NCGR assembly of this same sample. Other gene names,

Figure 6. A histogram across MMETSP samples depicting the number of con-
tigs identi�ed as novel in DIB assemblies. These contigs were absent in the
NCGR assemblies, based on negative conditional reciprocal best BLAST (CRBB)
results. Samples are sorted from highest to lowest number of ‘new’ contigs.
The region in gray indicates the number of unannotated contigs present in the
DIB re-assemblies, absent from NCGR ‘nt’ assemblies. Highlighted in blue are
contigs that were annotated with dammit [49] to a gene name in the Pfam,
Rfam, or OrthoDB databases, representing the number of contigs unique to the
DIB re-assemblies with an annotation.
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for example "Pkinase_Tyr","Bromodomain", and "DnaJ", are
found in both the NCGR and DIB assemblies, but are identi-
�ed as novel contigs based on negative CRBB results in the DIB
re-assembly of sample MMETSP1473 compared to the NCGR
reference.
Assembly metrics varied by taxonomic group being assembled.
To examine systematic taxonomic di�erences in the assem-
blies, metrics for content and assembly quality were assessed
(8). Metrics were grouped by the top eight most represented
phyla in the MMETSP data set as follows: Bacillariophyta
(N=173), Dinophyta (N=114), Ochrophyta (N=73), Chlorophyta
(N=62), Haptophyta (N=61), Ciliophora (N=25), Cryptophyta
(N=22) and Others (N=130).
While there were no major di�erences between the phyla

in the number of input reads (Figure 8 A), the Dino�agellates
(Dinophyta) had signi�cantly di�erent (higher) number of con-
tigs (p < 0.01), unique k-mers (p < 0.001), and % ORF (p <
0.001) compared to other groups (8), and assemblies from Cil-
iates (Ciliophora) had lower % ORF (p < 0.001) (8).

Discussion

DIB re-assemblies contained the majority of the previously-
assembled contigs.
We used a di�erent pipeline than the original one used to cre-
ate the NCGR assemblies, in part because new software was
available [18] and in part because of new trimming guidelines
[46]. The general genome assembler ABySS [20] was used in
conjunction with a de novo transcriptome assembly pipeline de-
scribed by Keeling et al. [31]. We had no a priori expectation
for the similarity of the results, yet we found that the majority
of new DIB re-assemblies included substantial portions of the
previous NCGR assemblies seen in the CRBB results. Given this,
it may seem surprising that the Transrate and BUSCO scores
are lower in the DIB re-assemblies relative to the NCGR coun-
terparts. However, given that the number of contigs and the
k-mer content were both dramatically increased in the DIB re-
assemblies, it is interesting that the ORFs and annotations were
similar between the two assemblies. If the extra content ob-
served was due to assembly artifact, we would not expect these
content-based results to be similar. The twometrics, Transrate
and BUSCO, which estimate “completeness” of the transcrip-
tomes, may not be telling the whole story. Our results suggest
that both pipelines yielded similarly valid contigs, even though
the NCGR assemblies appeared to be less sensitive.
The relative increase in number of unique k-mers from the

NCGR assemblies to the DIB re-assemblies could be due to the
higher number of contigs generated by Trinity. Within the data,
the Trinity assembler found evidence for building alternative
isoforms. The ABySS assembler and transcriptome pipeline
that NCGR used [31] appears to not have preserved that vari-
ation, perhaps in an attempt to narrow down the contigs to a
consensus transcript sequence.
Re-assembly with new tools can yield new results
Evaluation with quality metrics suggested that the DIB re-
assemblies were more inclusive than the NCGR assemblies.
The Transrate scores in the DIB re-assemblies compared to
the NCGR ‘nt’ assemblies were signi�cantly lower, indicating
that the NCGR ‘nt’ assemblies had better overall read inclu-
sion in the assembled contigs whereas the DIB assemblies had
higher Transrate scores than the NCGR ‘cds’ version. This sug-
gests that the NCGR ‘cds’ version, which was post-processed
to only include coding sequence content, was missing informa-
tion originally in the quality-trimmed reads. As we also saw
with % ORF, when �ltration steps select only for ORF content

in the NCGR ’cds’ versions, potentially useful content is lost.
The Transrate score [53] is one of the few metrics available for
evaluating the ‘quality’ of a de novo transcriptome. It is sim-
ilar to the DETONATE RSEM-EVAL score in that it returns a
metric indicating how well the assembly is supported by the
read data [13]. It does not directly evaluate the underlying de
Bruijn graph data structure used to produce the assembled con-
tigs. In the future, metrics directly evaluating the underlying
de Bruijn graph data structure may better evaluate assembly
quality. Here, the DIB re-assemblies, which used the Trinity
de novo assembly software, typically contained more k-mers,
more annotated transcripts, and more unique gene names than
the NCGR assemblies.
These points all suggest that additional content in these

re-assemblies might be biologically relevant and that these re-
assemblies provide new content not available in the previous
NCGR assemblies. Since contigs are probabilistic predictions of
full-length transcripts made by assembly software [18], ‘�nal’
reference assemblies are approximations of the full set of tran-
scripts in the transcriptome. Results from this study suggest
that the ‘ideal’ reference transcriptome is a moving target and
that these predictions may continue to improve given updated
tools in the future.
For some samples, complete BUSCO scores were lower than

over half of DIB vs. NCGR. This could be an e�ect of the BUSCO
metric, given that these samples did not perform poorly with
other metrics such as % ORF and number of contigs compared
to the NCGR. For other samples, MMETSP0252 (Prorocentrum
lima) in particular, assemblies required several tries and only
four contigs were assembled from 30 million reads. The fastqc
reports were unremarkable, compared to the other samples. In
such a large dataset with a diversity of species with no prior se-
quencing data it is challenging to speculate why each anomaly
occurred. However, further investigation into the reasons for
failures and peculiarities in the evaluation metrics may lead to
interesting discoveries about how we should be e�ectively as-
sembling and evaluating nucleic acid sequencing data from a
diversity of species.
We predict that assembly metrics could have been further

improved with longer read lengths of the original data since
MMETSP data had only 50 bp read lengths, although this would
have presented Keeling et al. [31] with a more expensive data
collection endeavor. A study by Chang et al. [25] reported a
consistent increase in the percentage of full-length transcript
reconstruction and a decrease in the false positive rate mov-
ing from 50 to 100 bp read lengths with the Trinity assembler.
However, regardless of length, the conclusions we draw would
likely remain the same that assembling data with new tools
can yield new results.
The DIB re-assemblies, including the additional biologically

relevant information, are likely to be meta-transcriptomes.
RNA sequences generated from the MMETSP experiments are
likely to contain genetic information from more than the tar-
get species, as many were not or could not be cultured ax-
enically. Thus, both the NCGR assemblies and the DIB re-
assemblies, including the additional biologically relevant infor-
mation, might be considered meta-transcriptomes. Sequenc-
ing data and unique k-mer content likely include bacteria,
viruses, or other protists that occurred within the sequenced
sample. We did not make an attempt to de-contaminate the
assemblies.
The evaluation metrics described here generally serve as a

framework for better contextualizing the quality of protistan
transcriptomes. For some species and strains in the MMETSP
data set, these data represent the �rst nucleic acid sequence
information available [31].
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Figure 7. Unique gene names found in a subset (296 samples) of either NCGR
‘nt’ assemblies or DIB re-assemblies but not found in the other assembly, nor-
malized to the number of annotated contigs in each assembly. The line indi-
cates a 1:1 relationship between the unique gene names in DIB and NCGR. More
than 97% of the DIB assemblies had more unique gene names than in NCGR
assemblies of the same sample.

Automated and programmable pipelines can be used to process ar-
bitrarily many RNAseq samples.
The automated and programmable nature of this pipeline was
useful for processing large data sets like the MMETSP as it al-
lowed for batch processing of the entire collection, including re-
analysis when new tools or new samples become available (see
op-ed Alexander et al. 2018). During the course of this project,
we ran two re-assemblies of the complete MMETSP data set
and one subset as new versions Trinity were released (Sup-
plemental Notebook 2 [43]). Each re-analysis of the complete
dataset required only a single command and approximately half
a CPU-year of compute. The value of automation is clear when
new data from samples become available to expand the data
set, tools are updated, or many tools are compared in bench-
mark studies. Despite this, few assembly e�orts completely
automate their process, perhaps because the up-front cost of
doing so is high compared to the size of the dataset typically
being analyzed.
For the purposes of future benchmarking studies, a subset

of 12 "High" and 15 "Low" performing samples were identi�ed
based on the evaluation metrics: number of contigs, longest
contig length, unique k-mers (k=25), and % Complete BUSCO
(eukaryota) (Supplemental Figure 4 [43]).
Analyzingmany samples using a common pipeline identi�es taxon-
speci�c trends.
The MMETSP dataset presents an opportunity to examine
transcriptome qualities for hundreds of taxonomically diverse
species spanning a wide array of protistan lineages. This is
among the largest set of diverse RNAseq data to be sequenced.
In comparison, the Assemblathon2 project compared genome
assembly pipelines using data from three vertebrate species
[60]. The BUSCO paper assessed 70 genomes and 96 tran-
scriptomes representing groups of diverse species (vertebrates,
arthropods, other metazoans, fungi) [55]. Other benchmarking
studies have examined transcriptome qualities for samples rep-
resenting dozens of species from di�erent taxonomic group-

ings [61, 62]. A study with a more restricted evolutionary anal-
ysis of 15 plant and animals species [62] found no evidence of
taxonomic trends in assembly quality but did �nd evidence of
di�erences between assembly software packages [59].
With the MMETSP data set, we show that comparison of

assembly evaluation metrics across this diversity provides not
only a baseline for assembly performance, but also highlights
particular metrics which are unique within some taxonomic
groups. For example, the phyla Ciliophora had a signi�cantly
lower percentage of ORFs compared to other phyla. This is
supported by recent work which has found that ciliates have
an alternative triplet codon dictionary, with codons normally
encoding STOP serving a di�erent purpose [37, 38, 39], thus
application of typical ORF �nding tools fail to identify ORFs ac-
curately in Ciliophora. Additionally, Dinophyta data sets had
a signi�cantly higher number of unique k-mers and total con-
tigs in assemblies compared to the assemblies from other data
sets, despite having the same number of input reads. Such a
�nding supports previous evidence from studies showing that
large gene families are constitutively expressed in Dinophyta
[63].
In future development of de novo transcriptome assembly

software, the incorporation of phylum-speci�c information
may be useful in improving the overall quality of assemblies
for di�erent taxa. Phylogenetic trends are important to con-
sider in the assessment of transcriptome quality, given that the
assemblies from Dinophyta and Ciliophora are distinguished
from other assemblies by some metrics. Applying domain-
speci�c knowledge, such as specialized transcriptional features
in a given phyla, in combination with other evaluation metrics
can help to evaluate whether a transcriptome is of good qual-
ity or “�nished” enough to serve as a high quality reference to
answer the biological questions of interest.

Conclusion

As the rate of sequencing data generation continues to increase,
e�orts to programmatically automate the processing and evalu-
ation of sequence data will become increasingly important. Ul-
timately, the goal in generating de novo transcriptomes is to
create the best possible reference against which downstream
analyses can be accurately based. This study demonstrated that
re-analysis of old data with new tools and methods improved
the quality of the reference assembly through an expansion of
the gene catalog of the dataset. Notably, these improvements
arose without further experimentation or sequencing.
With the growing volume of nucleic acid data in central-

ized and decentralized repositories, streamlining methods into
pipelines will not only enhance the reproducibility of future
analyses, but will facilitate inter-comparisons amongst from
both similar and diverse datasets. Automation tools were key
in successfully processing and analyzing this large collection
of 678 samples.
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Figure 8. Box-and-whisker plots for the seven most common phyla in the MMETSP dataset, (A) number of input reads, (B) number of contigs in the assembly, (C)
unique k-mers (k = 25) in the assembly, (D) mean percentage open reading frames (ORF). Groups sharing a letter in the top margin were generated from Tukey’s
HSD post-hoc range test of multiple pairwise comparisons used in conjunction with an ANOVA.
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